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Plants and Fibonacci
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The universality of many features of plant patterns and phyllotaxis has mys-
tified and intrigued natural scientists for at least four hundred years. It is
remarkable that, to date, there is no widely accepted theory to explain the
observations. We hope that the ideas explained below lead towards increased
understanding.
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1. INTRODUCTION

Since the time of Johannes Kepler, natural scientists have been fascinated
and intrigued by the observation that the phylla (elements such as leaves,
florets, stickers or bracts) on many plants are arranged in such a manner
that each phyllo lies on three familes of spirals. Moreover, the numbers of
arms in each of the spiral families are, in almost 95% of all cases, sequen-
tial triads in the regular Fibonacci sequence 1,1,2,3,5,8, . . . (Fig. 2(a)).
Further, the surfaces of these plants are tiled in polygonal shapes. The
challenge is to provide a rational basis for understanding plant patterns,
including an explanation for the presence of Fibonacci sequences.

By plant patterns we mean both the arrangement of phylla on plants
(phyllotaxis) and the tiling of the plant surface into polygonal shapes such
as ridges, hexagons, or parallelograms; see Fig. 1. In recent work,(15,16) we
have suggested that much of what is observed can be explained by mini-
mizing the elastic energy of a curved annular region of the plant’s tunica
(outer skin) in the neighborhood of the shoot apical meristem (SAM). In
this paper, we seek to address in more depth the question as to the extent
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Fig. 1. Common planforms on plants are (a) ridges, (b) irregular hexagons, (c) parallelo-
grams, and (d) staircase parallelograms. Theoretical reproductions of each planform based on
the mechanical model presented in Section 4 are shown in (e)–(h). Reprinted from Journal of
Theoretical Biology, P. D. Shipman and A. C. Newell, Polygonal Planforms and Phyllotaxis,
accepted for publication 2005, with permission from Elsevier.

that our results depend on the specific model we postulate rather than on
its universal features (e.g., symmetries) which are shared by many descrip-
tions, including the Douady–Couder paradigm explained below. This is
important because patterns arising from very different microscopic back-
grounds often show very similar features.

Common to all theories of phyllotaxis is that phylla form as small
bumps called primordia in a generative region near the plant tip. The pri-
mordia develop further into, for example, leaves or florets (phylla), and,
in the reference frame of the summit of the plant shoot, they move away
from the plant tip as the plant grows in height, changing in radial, but
not angular coordinate. Thus, if one labels phylla according to their dis-
tance from the plant tip, as in Fig. 2(a,c), the nth-numbered phyllo was
formed after the (n+ 1)st-numbered phyllo. To understand the formation
of plant patterns we thus have several questions to answer, including (i)
Can the same theory describe ridge-shaped and polygonal planforms? (ii)
In the case of polygonal planforms, what determines the positions at which
primordia (the polygons) form near the plant tip and therefore the phyllo-
tactic pattern that develops? and (iii) What determines the type of phyllo
that a primordium will develop into?

As plants are biological, and therefore very complex systems, the
answers to these questions involve a variety of physical mechanisms inter-
acting at different space and time scales. However, it has been proposed
by Douady and Couder(2,3) that phyllotaxis is a very robust phenomenon
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Fig. 2. The phylla of a cactus (a) and a succulent (c) are numbered according to their dis-
tance from the center. In (a), lines are drawn connecting neighboring phylla; this produces
families of 3 (in black) and 8 (in grey) sets of clockwise spirals and a family of 5 (in white)
counterclockwise spirals. (b,d) Putting radial r and angular α coordinates on the plant tip
and defining s = r or s = ln(r), depending on if the plant exhibits the plastochrone difference
or ratio (see text), the numbered points form lattices in the (s, α)-plane. The vectors ωj are
natural choices as generating vectors for the lattices. Reprinted from Journal of Theoretical
Biology, P. D. Shipman and A. C. Newell, Polygonal Planforms and Phyllotaxis, accepted for
publication 2005, with permission from Elsevier.

and that many, if not most, of what is observed can be explained by a
simple set of dynamical rules formulated by Hofmeister(13) or Snow and
Snow(17)–that is, the answer to question (ii) is independent of the physi-
cal mechanism responsible for producing primordia as long as the mecha-
nism satisfies a few basic criteria. The central idea of Hofmeister, set out
in Section 3, is that each new primordium should be placed in the most
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“open” space available to optimize its ability to grow into fully matured
phylla. Douady and Couder constructed an experimental paradigm for
these rules in which a set of repelling points (which represent primordia)
are introduced at fixed time intervals at the center of a plate.

Our picture is radically different. We do not suggest that individual
primordia are formed to optimize their own individual growth progress,
but rather that the pattern that forms is a global one and that plant sur-
faces in the generative region are, to a good approximation, linear com-
binations

∑N
j=1 aj cos(lj r +mjα) of elementary periodic deformations, i.e.,

modes cos(lj r + mjα), where r and α are respectively radial and angular
coordinates centered at the summit of the plant tip. The choices of wave-
vectors �kj = (lj ,mj ) and real amplitudes aj are determined by the physi-
cal mechanism and minimize, in our physical model, the elastic energy of
a curved, elastic annulus (the generative region) under mechanical stresses
(due to growth). We suggest that, while some general features of the phyl-
lotactic pattern can be captured by members of a general class of models
sharing Hofmeister and/or Snow or Snow rules, there are other features
which are only captured by specific properties of the elastic sheet model.
Further, we note that the interplay between stresses in the plant’s tunica,
changes in the microstructure of the biological material and growth hor-
mones (e.g., auxin), which play crucial roles in the later development of
fully mature phylla, is important, but for the first approximation our pic-
ture suggests that the deformed surface is produced by purely mechanical
means. This model follows the pioneering work of Paul Green and his col-
leagues at Stanford who argued, in the 1990’s, that various growth processes
lead to compressive stresses in the plant’s tunica in an annular zone near
its shoot apical meristem. In a series of papers, they gave detailed reasons
and provided experimental evidence to support this picture.(9–12,18) What
they did not recognize was how crucial the quadratic nonlinear interactions
of the linearly most unstable modes are in the competition for dominance.
These interactions lead naturally to most, if not all, of the phyllotactic pat-
terns observed. They arise from that part of the in-place strain energy which
is the product of the perturbed Airy stress and the Gaussian curvature of
the deformed surface, and the key observation is that this energy is mini-
mized by special triads of modes whose wavevectors satisfy the condition
�k1 + �k2 = �k3. By “special triads” we mean that the preferred wavevectors are
those that maximize a combination of their linear growth rates σ(�kj ) and an
interaction coefficient τ(�k1, �k2, �k3 = �k1 + �k2). Both σ and τ contain specific
information regarding the physical mechanism.

Our goal in this short paper is to use comparisons with the Douady–
Couder paradigm and the results of their energy functional based on
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mutually repelling primordia in order to argue in favor of the Green
model which starts from premises which are well supported by experiment.
The description of phyllotaxis in terms of phyllotaxis coordinates is pre-
sented in Section 2. In Section 3 we delineate the premises and give the
main results of the DC model. We write the premises of our biomechan-
ical model in a parallel format in Section 4.1. In Section 4.2, we dis-
cuss the growth (σ(l,m)) and interaction (τ ) coefficients and show that,
as the plant grows, the energy-minimizing configuration evolves due to
combinations of a new, most linearly unstable circumferential mode and
the influence of already formed configurations which have moved out of
the generative region. In Section 5, we discuss how the key difference of
our model from the DC paradigm—that the mechanical model leads to a
study of the interaction of elementary modes and the calculation of their
amplitudes, whereas the Douady–Couder paradigm assumes the interac-
tion of primordia—allows us to address both questions (i) and (ii) and has
potential consequences for question (iii).

2. PHYLLOTACTIC PARAMETERS

In this section, we find the natural coordinates in which to state
the position of phylla on a plant and thus to describe phyllotaxis. In
Fig. 2(a,c), phylla are numbered according to their distance from the cen-
ters of the plants. This allows us to illustrate the following three standard
parameters used to describe phyllotactic patterns:

1. The whorl number g: Each phyllo on a plant is a member of a
whorl of g phylla that are evenly spaced about a circle centered at the
center of the plant. The number g is locally constant. For the example of
Fig. 2(c), g = 2, as one sees pairs of phylla that are equidistant from the
center of the plant. For the cactus of Fig. 2(a), g =1.

2. The divergence angle D = 2πd: The angle between consecutively
numbered phylla is taken to be the angle between the rays from the center
of the plant to the centers of those phylla; see Fig. 2(a). It is an obser-
vation that the angle between any two consecutively numbered phylla is
locally constant on any plant; this constant is called the divergence angle,
D = 2πd. There is a natural ambiguity in the measurement of the angle,
as one can either measure clockwise or counterclockwise. If the two mea-
surements are not equal, the plant shows a handedness and D = 2πd is
taken to be the smaller of the two measurements; thus, 0 <d � 1

2 . In our
Fig. 2(a) example, the divergence angle is roughly D = 2π(0.382) mea-
sured clockwise, and for the example of Fig. 2(c), D = 2π

4 measured either
counterclockwise or clockwise.
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3. The plastochrone ratio λ: Call the length of the ray from the
center of the plant to the center of the nth-numbered phyllo Ln; see
Fig. 2(b). The standard claim of the phyllotactic literature is that on most
plants, at least for phylla close the center, the ratio Ln+1

Ln
is locally inde-

pendent of n. That ratio is called the plastochrone ratio. It seems that on
many cacti it is the difference Ln+1 −Ln that is constant. For such plants
that difference we shall call the plastochrone difference. We will denote this
parameter by λ.

The observations leading to parameters g, d and λ tell us that the
arrangement of phylla on plants is a lattice. To see this pictorially, put
radial and angular coordinates (r, α) on the cactus of Fig. 2 and then
transfer the result to Fig. 2(b), where dots represent the centers of phy-
lla, and the vertical axis is s = log(r) if the plant exhibits the plastochrone
ratio and s = r if the plant exhibits the plastochrone difference. We choose
the direction of increasing α to be the direction determined by the clock-
wise or counterclockwise handedness. If the plant has whorl number g,
divergence angle D =2πd and plastochrone ratio λ, in the (s, α)-plane the
plant’s phylla are part of a lattice �( �ωλ,d, �ωg) that is the integer span of
the vectors �ωλ,d = (λ,2πd) and �ωg = (0, 2π

g
) where λ equals log(λ) or λ if λ

is a plastochrone ratio or difference, respectively. The bases of �( �ωλ,d, �ωg)

are exactly the linear combinations

α �ωλ,d +β �ωg =
(
αλ,2π(dα + β

g
)
)

= 1
g
(gαλ,2π(gαd +β)),

γ �ωλ,d + δ �ωg =
(
γ λ,2π(dγ + δ

g
)
)

= 1
g
(gγ λ,2π(gγ d + δ)),

(1)

where α,β, γ, and δ are integers such that αδ −βγ =±1. Setting m
.=gα,

n
.=gγ , p

.=δ, q
.=β, we have that all of the bases of the lattice �( �ωλ,d, �ωg)

are given by

�ωm = 1
g
(mλ,2π(md −q)),

�ωn = 1
g
(nλ,2π(nd −p)),

(2)

where m, n, p, q are any integers such that pm− qn=±g =± gcd(m,n);
gcd(m,n) means the greatest common divisor of m and n. Often there is a
natural choice of the integers m and n to describe a phyllotactic pattern.
For example, in Fig. 2.1(a), the choice m=3 and n=5 corresponds to the
families of 3(5) spirals proceeding clockwise (counterclockwise) from the
center of the plant; the vectors ω3 and ω5 as marked in Fig. 2.1(b) then
form a natural basis for the phyllotactic lattice. The choice for m,n used
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to describe the pattern is referred to as the parastichy pair. The choice
of parastichy pair used to describe a pattern has some degree of ambigu-
ity; for example, the eight clockwise spirals of Fig. 2.1(a) justify a possible
choice of (5,8). For lattices with g >1, spirals are not as easily traced out
by the eye. We will take the convention of stating the choice (m,n)= (g, g)

as the parastichy pair for such a pattern; the corresponding lattice gener-
ators (2) are marked as ω2 and ω′

2 in Fig. 2.1(d).
It is observed in plants that the Fibonacci sequence arises as the par-

astichy pair of a phyllotactic pattern undergoes transitions, starting with
lower numbers such as (m,n) = (1,2) or (m,n) = (2,3) and moving up
the sequence 1,2,3,5,8, . . . (i.e., (1,2) → (2,3) → (3,5) → ·· · ), typically
as the plant grows in width. These transitions arise in both our model
and that of DC as continuous (second order, Type II) transitions. Transi-
tions in which the parastichy pair moves up the sequence (2,2)→ (2,3)→
(3,3) → ·· · are also observed in nature and arise as discontinuous (first
order, Type I) transitions in the models.

3. HYPOTHESES OF HOFMEISTER AND THE SNOWS, AND THE

DOUADY–COUDER PARADIGM

Phylla are only formed near the tip of a plant, so that the phyllotactic
patterns as seen in Fig. 2 are the result of a prolonged process in which
phylla form and then move away from the plant tip as the shoot grows
in height. This process is described by three of five rules formulated by
Wilhelm Hofmeister in 1868. As stated by Douady and Couder,(12) these
rules are

1. The stem apex (Fig. 3) is axisymmetric.

2. The primordia are formed at the periphery of the apex (Region 2
in Fig. 3) and, due to the shoot’s growth, they move away from the center
with a radial velocity V (r) which may depend on their radial location.

The next two Hofmeister rules concern the determination of the posi-
tions at which the primordia form, i.e. the choice of divergence angle 2πd.
These will be stated in the next section. The last Hofmeister rule reads

5. Outside of a region of radius R (Region 3 of Fig. 3), there is no
further reorganization leading to changes in the angular position of the
primordium.

Our discussion now will focus on what belongs in slots 3. and 4.–what
determines if and where primordia are formed in the generative region.



944 Newell and Shipman

Fig. 3. Schematic representation of the shoot apical meristem (SAM). The SAM consists of
a thin skin (the tunica, Regions 1,2,3 in the diagram) attached to a foundation of less well
organized cells (the corpus, Region 4 in the diagram). Cells in Region 1 show little growth
activity and Region 2 is the generative region in which active cell division is occuring and
new primordia are first seen to form. As the plant tip grows, cells move from Region 2 to
Region 3, radially outward in the reference frame of the diagram’s north pole. In Region 3,
primordia that formed in Region 2 further develop into mature elements such as leaves. In
Section 4, radial r and angular α coordinates on the tunica surface in the generative region
are defined by projecting the surface to the polar coordinates on the plane. Reprinted from
Journal of Theoretical Biology, P. D. Shipman and A. C. Newell, Polygonal Planforms and
Phyllotaxis, accepted for publication 2005, with permission from Elsevier.

Concerning positions at which primorida form in the generative region,
Hofmeister proposed the rules

3. New primordia are formed at regular time intervals (the plastoch-
rone T ).

4. The incipient primordium forms in the largest space available left
by the previous ones.

Douady and Couder (DC) sought the simplest experiment that could
simulate the Hofmeister rules. Their basic experimental device is a plate
with a small central dome in the mddle; this is to represent to the plant
with the apex at the tip. The plate is placed in a vertical magnetic field
that is stronger at the edges of the plate than in the middle, and ferro-
magnetic drops (representing primordia) are periodically dropped onto the
center of the central dome (representing the apex). The drops fall to the
perimeter of the central dome and then move radially outward, following
the gradient of increasing magnetic strength. The magnetic field is chosen
so that the velocity V (r) in an exponentially increasing function of the
radius. After choosing a radial direction in which to fall from the top



Plants and Fibonacci 945

of the central dome, the drops do not change their angular coordinate.
How the drops initially choose their angular coordinate is of interest, and
here the central point is that the drops form repelling magnetic dipoles. A
drop that falls on the central dome moves to the position on the bound-
ary of the dome as determined by the repulsions of the drops that recently
formed and are moving away from the center, and the experimental result
is that a there is constant divergence angle between the angular coordi-
nates of successively-dropped drops. Denoting the radius of the central
dome by R, the initial speed of the drops after falling to the boundary
of the dome by V0, and the time period in which drops are dropped onto
the central dome by T , the plastochrone ratio of the resulting pattern is
G

.= V0T
R

. G is a parameter chosen by the experimenter. As Douady
and Couder decrease G, the divergence angle between succesive drops
approaches the golden angle and a lattice pattern with a Fibonacci
parastichy pair is produced.

As the Hofmeister rules (3) and (4) and the electromagnetic paradigm
assume that one primordium forms at a time, the Hofmeister rules do not
allow for the formation of whorl patterns with g > 1 as in Fig. 2(c). DC
thus turned to a revised set of hypotheses of Snow and Snow;(17) as stated
by Douady and Couder,(4) the revised rules read

3. The apex is in the shape of a parabaloid, and the primordia can
have an azimuthally elongated shape.

4. A new primordium forms when and where a large enough space
has been formed at the periphery of the apex.

The area of a primordium and the growth of the primordia and apex
now play central roles. DC imagine primordia as circles with diameter d0
on a parabaloid with curvature described by a parameter N . For N = 1,
the apex is flat, and for N > 1, the apex has curvature. Projected to the
plane, the circular primordia on a curved apex will be elongated in the
angular direction, so N > 1 can be thought of as describing azimuthally
(angularly) elongated primordia. As a primordium of diameter d0 occupies
space that can then not be taken by another primordium, DC imagine that
each primordium generates a repulsive energy E(d), where d is the dis-
tance from the primordium. Projecting the apex parabaloid onto the plane
and using polar coordinates, DC employ the distance function

d(P0, P1)=
√
√
√
√

[
r2

0 − r2
1

N
+2Nr0r1 (1− cos(θ0 − θ1))

]

. (3)
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between two points with coordinates P0 = (r0, θ0) and P1 = (r1, θ1), and the
repulsive energy that a primordium exerts on points a distance d from it
is given by

E(d)=
−1+

(
tanh α d

d0

)−1

−1+ (tanh α)−1
. (4)

Here α is a “stiffness” parameter; for lower α, a primordium has a larger
influence on other points. Thus, any point on the generative circle of
radius R from the apex summit has a repulsive energy exerted on it by
each of the previously formed primordia that have since moved radially
outward. The energy E(θ) of a point P = (R, θ) on the generative circle
is defined to be the sum of the repulsive energies exerted on that point
by each of the previously formed primordia. As the primordia move out-
ward, the energy E(θ) decreases at any point. DC show that it is equiva-
lent to say that a space of diameter d0 (and therefore a potential spot for
a new primordium to form on the generative radius) has formed as it is
to say that the energy E(θ) becomes lower than some threshold value at
that point. Thus, to simulate the Snow and Snow hypothesis 4., DC allow
a primordium to form on the generative circle where and whenever E(θ)

decreases to the threshold value. In numerical experiments, DC investigate
the phyllotactic patterns that form as the parameter �̃= d0

R
decreases. They

employed two schemes. In the first scheme, starting from a large value
of �̃, they let n consecutive particles appear, where n was large enough
to allow for a steady-state regime to appear and varied from up to 150
to 500. Then, starting from the positions of the last approximately 20
deposited primordia, they decreased �̃ a small amount and let particles
form again until a steady-state regime was found. For the second scheme,
DC began with a few primordia having a configuration that was expected
to be either stable or unstable and observed whether or not the pattern
continued to grow.

The main geometric parameter that determines the pattern that devel-
ops is the ratio �̃, which plays a role analogous to that of G in the electro-
mechanical paradigm. Both whorled and spiral phyllotactic arrangements
of primordia were produced in the numerical experiments, with larger
parastichy numbers for smaller values of �̃, and to simulate a typical
plant, DC sought to understand what happens as �̃ decreases from a large
value.

1. For large values of �̃, the relative stability of the whorled and spi-
ral modes is determined by the conicity N and stiffness α parameters.
The decussate (alternating 2-whorl) (2,2,4) configuration could only be
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obtained for large values of the conicity parameter N . The exploration
of various values of α showed that large values of α (i.e., short-range
interactions) favor whorled modes, whereas small values favor spiral
modes. Thus, in the DC model, the whorled decussate mode (2,2) can
only exist at large �̃ with either azimuthally elongated primordia or
with conical apices and short-range interaction.

2. As �̃ is decreased, Type I transitions in which the parastichy num-
bers increase up the sequence (n − 1, n) → (n, n) → (n, n + 1) → ·· · are
observed. However, the transition between, for example, a (1,2,(3)) spi-
ral state and a (2,2,(4)) decussate state is not abrupt; in between there
is a transitory state in which the divergence angle varies periodically.

3. For low �̃, Type I transitions to whorled modes of higher order con-
tinue to occur. To produce Type II transitions and therefore spiral pat-
terns, DC take �̃(t) as a rapid function of time. The system then does
not have enough time at a given value of �̃ to make a transition to a
whorled mode, and a continuous change (m,n)→ (n,m+n) to the next
spiral mode occurs.

The DC model is thus able to capture both whorled and spiral phyl-
lotaxis, with transitions between patterns determined by the evolution of
�̃. The suggestion of DC is that any microscopic mechanism must con-
tain the simple dynamial rules of their model in that it (1). defines finite-
sized primordia and (2). allows for an interaction (repulsion or attraction)
of the primordia.

By assuming that primordia of a given shape form, the Douady–Couder
paradigm focuses on the phyllotactic question (ii). In the case of polygonal
planforms, what determines the positions at which primordia (the polygons)
form near the plant tip and therefore the phyllotactic pattern that develops?
Thus, the formation of ridges and various polygonal configurations such as
hexagons and parallelograms are not captured by their model.

4. BIOMECHANICAL MODEL

4.1. Justification for and Hypotheses of a Biomechanical Model

Our goal now is to formulate a biomechanical model for the forma-
tion of plant patterns. Green, et al. have provided the following evidence
that a biomechanical mechanism underlies the plant pattern formation:

1. Hernández and Green(12) grew a sunflower head between two fixed par-
allel bars. This resulted in an amplification of undulations parallel to
the bars, and phyllotaxis followed this pattern. This external mechani-
cal influence also changed the identity of the sunflower bracts.
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2. Green(9) induced a new row of leaves to form on an expanding meri-
stem by using a glass frame to apply a mechanical constraint.

3. Steele(18) noted that the turgor pressure inside plant cells is between 7
and 10 atmospheres, and that this large pressure can hardly be ignored
in the phyllotactic process. Also, in this paper, Steele notes a linear rela-
tionship between the size of primordia and the thickness of the tunica.

4. In,(5) Dumais and Steele showed sunflowers cut along a diameter. The
two sides of the cut stick together only in the region of the surface
where the pattern formation is occurring, indicating that the compres-
sive force keeping the cut closed is related to the pattern formation.

5. Fleming et al.(7) were able to induce primordia on tomato plants by
locally applying the protein expansin; some of these primordia then
developed into leaf-like structures. The known effect of the extracellu-
lar expansin proteins is to increase cell wall extensibility, thus changing
the mechanical properties of the plant material.

In the review article(9) Green outlines the hypothesis that buckling
of the compressed tunica is the main mechanism determining phyllotac-
tic pattern. Green continues to discuss evidence for feedback mechanisms
between the buckling configuration and changes in cellulose orientation in
cell walls and direction in cell division; buckling is thus only one com-
ponent in the complex process of building the pattern, and it is interest-
ing to note that similar feedback mechanisms between changes in stresses
and changes in cellulose orientation have been noted for wood cells in tree
branches.(6,19) However, the hypothesis of Green is that the reasons for
Fibonacci patterns and the difference between Types I and II transitions
can be found within the buckling mechanism.

The first three hypotheses of our model are modeled on the first three
hypotheses of Snow and Snow as stated by DC. They read

1. The stem is axisymmetric.
2. A normal deflection w of the generative region at the periphery of the

apex is produced and advected out in the reference frame of the apex
summit.

3. The curvature of the annular generative region can be described by
signed radii of curvature Rα and Rr in the angular and radial direc-
tions, with Rj taken to be positive if the surface along the j coordinate
line bends away from the normal vector (see Fig. 4). In this article, we
assume that Rα =Rr so that the curvature of the generative region is as
pictured in either Fig. 4 (a) or (b), depending on the sign of Rα. More
general shapes are included in,(16) but are not essential for our argu-
ment. The coordinates r and α are placed on the annular generative
region by projection to the polar coordinates on the plane; see Fig. 4.
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Fig. 4. (a) Spherical (Rα,Rr > 0), (b) Inverted Spherical (Rα,Rr < 0), and (c) Hyperbolic
(Rα >0,Rr <0) geometries of the generative region, denoted by light shading. Reprinted from
Journal of Theoretical Biology, P. D. Shipman and A. C. Newell, Polygonal Planforms and
Phyllotaxis, accepted for publication 2005, with permission from Elsevier.

The key difference from the statement of the rules by DC is that we
consider a deformation w of the generative region instead of assuming
the formation of primordia. The next two hypotheses are specific to
the mechanism of mechanical buckling in the generative region as the
source of pattern formation.

4. The generative region of the plant apex is modeled as a thin, elastic
spheroidal shell (the tunica, Region 2 in Fig. 2.2) attached to an elastic
foundation (the squishy corpus, Region 4 in Fig. 2.2) and under com-
pressive stresses due to growth. The growth stresses develop if either
the tunica is growing faster than the corpus foundation or, in the case
Rα < 0, if the corpus foundation is growing faster than the tunica. We
assume that the compressed tunica shell will buckle to minimize the
elastic energy of the shell-corpus, thus giving the deformation w. Thus,
in this first model, we are ignoring possible plastic or viscoelastic prop-
erties of the plant material.

5. Outside of a region of radius R, the deformation w may grow in ampli-
tude (i.e., w �→ηw, η>1), but there is otherwise no change in the pattern.

The main task of our analysis is the find the elastic energy-minimiz-
ing deformation w of the tunica in the generative region. In the Föppl-von
Kármán–Donnell (FvKD) theory,(1,8) the elastic energy of the thin tunica
shell can be written as a functional of the normal deflection w of the
tunica shell and the Airy stress function f , which is a potential for the
in-plane stresses; indeed, assuming that the stresses are constant through
the width h of the tunica shell, and denoting the stress tensor by σij ,

frr =hσαα, frα =−hσrα, fαα =hσrr .

We write in (5) below the dimensionless energy, where the dimension-
less parameters are written in terms of the natural buckling wavelength,
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namely the length of the most linearly unstable mode. The natural wave-
length is given by 2π�, where

�4 = Eh3ν2

κ + Eh

R2
α

,

for Young’s modulus E, Poisson’s ratio ν and the Hooke’s constant κ of
the elastic foundation. Two parameters in the energy express the geometry
of the generative region and two give the stress tensor.

The first geometric parameter is the ratio

� = R

�

of the circumfrance 2πR of the central circle in the generative region
to the natural wavelength 2π�; this is roughly the inverse of the DC
parameter �̃ and will play an analogous role in our model. Approximating
the Laplacian by the Euclidean Laplacian � = ∂2

r + 1
�2 ∂2

α (instead of the
Laplacian ∂2

r + 1
�
∂r + 1

�
∂2
α we simplify the analysis; notice that this simplifi-

cation is similar to that used by DC in that it is valid if pattern formation
is determined by what happens on the circle of radius R. Assuming that
the two radii of curvature in the generative region are of equal magnitude
(so the apex is spherical; more general shapes are discussed in ref. 18), the
second geometric parameter expresses the dimensionless curvature

C = �2

Rαhν

of the apex in the generative region. This is analogous to the DC conici-
ty parameter N , but notice that, whereas C is strictly relevant at radius R

from the apex summit where new primordia are forming, the parameter N

expresses the conicity of the entire apex and is essential for determing the
effect of old primordia on newly formed primordia.

Experimental evidence indicates that the largest compressive stress in
the generative region is along the angular coordinate line;(5) the principle
stresses (averaged through the width of the shell) are thus Nrr =hσrr and
Nαα =hσαα. The corresponding dimensionless parameters are

P =−Nαα�2

Eh3ν2
, χ = Nrr

Nαα

.

Scaling the radial coordinate by 2π�, the dimensionless elastic energy
functional is given by
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E(w,f )=
∫

⎡

⎣
1
2 (�w)2+V (w) −1

2P
(
χ∂rw+ 1

�2 ∂αw
)2

+f
(
C�w− 1

2ν�2 [w,w]
)

− 1
2 (�f )2

⎤

⎦dr dα,

(5)

where [f,w] = frrwαα + fααwrr − 2frαwrα, and consists of the following
terms: The first term in (5) resists buckling and corresponds to the bend-
ing energy of the shell. V (w) is a potential coming from the elastic foun-
dation and an applied pressure from corpus growth; we take V (w) =
κ
2 w2 + γ

4 w4 for spring constants κ and γ . The next two terms are a strain
energy, approximately equal to the Airy stress function multiplied by the
Gaussian curvature.(7) The final term arises from in-surface deformations.
The dimensionless FvKD equations for an overdamped shell are the vari-
ational equations ζwt =− δE

δw
, 0=− δE

δf
, so that, after scaling t ,

wt +�2w +κw +γw3 +P

(

χ∂2
r w + 1

�2
∂2
αw

)

+C�f − 1
ν�2

[f,w]=0,

�2f −C�w + 1
2ν�2

[w,w]=0. (6)

The first equation is the stress equilibrium equation, and the second gives
a compatibility condition relating w and f . Note that the parameter � can
be hidden in the equations by scaling α �→ 1

�
α.

When the stress P is larger than some critical value Pc, the uniform
static solution w0 =0, f0 =−P(χr2 +α2) of the FvKD equations is linearly
unstable and certain shapes and configurations are preferentially ampli-
fied. We write the deviations w(r,α, t) from w0 as

∑N
j=1(Aj (t)eilj r+imj α+

complex conjugate) and the deviations f (r, α, t) from f0 in terms of the
Aj(t) by solving iteratively the compatibility equation 0 = δE

δf
. Substitut-

ing these expressions into (5) and averaging over space, the perturbation
energy E(w,f ) becomes

E = −
∑

�k∈A

σj (lj ,mj )AjA
∗
j −

∑
τ123

(
A1A2A3 +A∗

1A
∗
2A

∗
3

)

+
N∑

c,d=1

γcdAcA
∗
cAdA∗

d . (7)

Details of the calculation are given in.(16) The first sum in (7) is taken over
all wavevectors which are in the active set A, which is the set of �kj for
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which the (real) linear growth rates σ(lj ,mj ) are greater than some small
negative number (to allow for subcritical bifurcations). The cubic terms
in (7) arise from all wavevector triads in A–that is, all triplets �k1, �k2, �k3
of wavevectors in A such that �k1 + �k2 = �k3. The coefficient τ123(�k1, �k2, �k3 =
�k1 + �k2), given below, is a function of the triad wavevectors. The quartic
terms are positive definite and are mainly due to the elastic foundation
(the squishy corpus). As the system is overdamped, the time dependence
of the Aj(t) are given by gradient flows ζ ∂

∂t
Aj = − δE

δA∗
j
, and therefore

{Aj(t)}N1 relax to local minima in E. Our task is to find energy-minimizing
configurations.

As the energy-minimizing amplitudes Aj are found to be real num-
bers, the energy-minimizing deformation w(r,α) = ∑N

j=1(Aj (t)eilj r+imj α+
complex conjugate) can be written as w(r,α) = ∑

aj cos(�kj · �x), aj = 2Aj ,
�x = (r, α). This energy-minimizing w(r,α) is the theoretical calculation for
the buckling pattern in the generative region. Assuming that the pattern
formed in the generative region remains the same as material moves radi-
ally outward from the generative region (our hypotheses 2. and 5.), after
the tip has grown a length rg, the observed pattern is given by the graph
of the function w(s,α), 0 < s < rs , where s = r, rs = rg or s = ln(r), rs =
ln(rg), depending on if the radial growth is constant or exponential. This
leads in the former case to a pattern with the plastochrone difference, and
in the latter case to one with the plastochrone ratio.

It will convenient for the analysis in Section 4 to connect the defor-
mation w(r,α) with the phyllotactic lattice generators 2 in the case when

w(r,α)=
N∑

j=1

aj cos(�kj · �x), (8)

where the wavevectors �kj are integer combinations of two wavevectors
�km = (lm,m) and �kn = (ln, n) (for example, if w(r,α) = ∑3

j=1 aj cos(�kj · �x),
where �k1 + �k2 = �k3). The maxima of the deformation (8), where each wave-
vector is an integer combination of

�km = (lm,m)=
(

2π

λ
(q −md),m

)

, �kn = (ln, n)=
(

2π

λ
(p −nd), n

)

,

(9)

for given choices of d, λ,m,n and p,q such that pm−qn=±g, occur on
a lattice spanned by the generators of phyllotactic lattices given by (2),
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namely

�ωm = 1
g

(λm,2π(md −q)), �ωn = 1
g

(λn,2π(nd −p)). (10)

The relationship between a pair of wavevectors (9) and the dual pair (10)
of lattice generators can be expressed by defining the matrices

K=
( �kn

�km

)

=
( 2π

λ
(p−nd) n

2π
λ

(q−md) m

)

, �=(�ωm, �ωn)= 1
g

(
λm λn

2π(md−q) 2π(nd−p)

)

such that

K�=±2πI.

As the radial coordinate in (5) is scaled by the natural wavelength 2π�,
the modulus A=2π λ

g
R� of the determinant of the matrix

�′ = ( �ωm, �ωn)= 1
g

(
λ�m λ�n

2πR(md −q) 2πR(nd −p)

)

approximates the area of a newly formed primordium (ignoring the curva-
ture of the apex in the generative region and assuming that the size of the
primordium is small compared to R).

4.2. Energy-Minimizing Configurations

4.2.1. The Most Unstable Mode; Ridge Planforms

The first task in minimizing the energy (7) is to determine the set A
of active modes and the properties of the coefficient σ(l,m). The linear
growth of a mode with wavevector �k = (l,m) is

σ(l,m)=−
(

l2 + 1
�2

m2
)2

+P

(

χl2 + 1
�2

m2
)

−1. (11)

The smallest value of P for which there is a mode with nonnegative linear
growth is the critical value Pc =2, at which σ(l =0,m=�)=0. For P >Pc,
there is a set of modes with positive linear growth rates, but the critical
wavevector �kc = (0,�) remains the mode with the largest linear growth rate.
The derivation of the energy (7) assumes that the stress parameter P is
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slightly above the critical value Pc, so that, if χ =0, this set is a small disk
centered at �kc = (0,�); see Fig. 5(a). Notice that, for χ = 0, for any fixed
angular wavenumber m, the growth rate σ(l,m) as a function of l is max-
imized for l =0.

As the angular wavenumber must be an integer, the most linearly
unstable deformation is wc = cos(mα) for the closest integer m to �. This
deformation corresponds to ridge patterns (as seen, for example, on a
pumpkin). The energy (7), however, also contains nonlinear terms that
allow for the interaction of modes in the active set, so the deformation wc

may (for large enough nonlinear interaction) be unstable to a configura-
tion consisting of a sum of multiple modes. We formally take the set of
active modes to be the set of modes with wavevectors �k such that σ(�k)>

−3σ(�kc); see Fig. 5(a). Practically, we find the set of modes that mini-
mizes the energy (7), and the growth rates for these sets of modes will have
positive or slightly negative growth rates.

Fig. 5. The coefficients σ and τ of the averaged elastic energy. (a) The positive and active
modes for the elliptic shell with χ = 0 and P = 2.4. (b) The coefficient τ(λ, d, n,m,m+n) as
a function of d for the choices C

ν
=−3,� =8,m=3, n=5, λ=1.5.
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4.2.2. The Most Unstable Triad; Hexagon Planforms

As the key nonlinear interaction is encoded in the cubic coefficient

τ(�kr , �ks, �kr+s = �kr + �ks)= τ(r, s, r + s) = − C

ν�2
(lrms − lsmr)

2

×
∑

j=r,s,r+s

1

l2
j + 1

�2 m2
j

, (12)

we first describe key characteristics of how τ depends on the parameters
and choices of wavevectors.

0. As in σ , the angular wavenumber m and parameter � only appear in τ

in the ratio m
�

. The parameter � can be scaled, through m, out of the
energy (7).

1. τ is proportional to the curvature constant C; when C =0 the quadratic
coefficient in the amplitude equations vanishes. This means that ridges
are the only stable solutions of the amplitude equations when C = 0.
Note that the appearance of C in the amplitude equations comes from
there being nonzero curvature in the original, unbuckled shell. τ is pos-
itive for C < 0 (i.e., for the hyperbolic or inverted spherical generative
region, Fig. 4 (b,c)) and negative for C > 0 (i.e., for the spherical gen-
erative region, Fig. 4(a)).

2. As lrms − lsmr = lrmr+s − lr+smr = lsmr+s − lr+sms , τ(�kr , �ks, �kr+s) is a
symmetric function of the wavevectors.

3. What values of the radial wavenumbers maximize τ ? For a fixed value
of mj , the fraction

1
(
l2
j + 1

�2 m2
j

)2

is maximized for lj = 0. If, however, two radial coordinates are equal
to zero, then τ also equals 0 due to the factor (lrms − lsmr)

2. For fixed
angular wavenumbers, the coefficient τ achieves local maxima at where
exactly one of the radial coordinates is zero.
Writing the radial wavevectors in terms of the phyllotactic coordinates,
τ(r, s, r + s) becomes

τ =−C

ν
(2π)2

⎡

⎢
⎢
⎣

1

2π
(
�

q−md
g

)2+m2 λ2

g2

+ 1

2π
(
�

p−nd
g

)2+n2 λ2

g2

+ 1

2π
(
�

p+q−(m+n)d
g

)2+(m+n)2 λ2

g2

⎤

⎥
⎥
⎦ (13)
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From this last expression, we see that the condition that exactly one of
the radial coordinates is zero means that τ(m,n,m+n), as a function of
d, achieves local maxima at the three values d = p

n
,

q
m

,
p+q
m+n

that make one
of the radial coordinates equal to zero. In fact, τ is a very sensitive func-
tion of d, as illustrated in the graph of τ as a function of d in Fig. 5(b).
Also from (13) one sees that the coefficient τ is larger for smaller λ–that
is, for larger l1, l2.

4. What values of the angular wavenumbers maximize τ ? Writing �k1 =
(l1,m3 − m), �k2 = (l2,m), �k3 = (l1 + l2,m3), fixed m3 and arbitrary val-
ues of C and �, τ is maximized at m = |l2|m3

|l1|+|l2| . In particular, we will
be interested in the case l1 =−l2, �k3 = (0,m3 =�), for which τ is maxi-
mized at �k1 = (l,

m3
2 ), �k2 = (−l,

m3
2 ).

We first assume for simplicity that � =2N for some integer N . Then,
the most unstable mode as P increases above threshold has wavevector
�kc = (0,� = 2N). However, for large enough τ(�km, �kn, �kc) this ridge solu-
tion, with amplitude Ac = σ(0,2N)

3γ
, can become unstable to a triad of

modes with wavevectors �km, �kn, �kc, where �km + �kn = �kc. The energy (5)
allows for multiple triads, but as a first step we seek to find the most
unstable single triad configuration. Writing �km = (l,m)= 1

g
( 2π

λ
(q −md),m)

and �kn = (−l, n) = 1
g
( 2π

λ
(p − nd), n), we need to determine what choices

of l m and n (or, equivalently, what choices of λ and d and m,n) and
corresponding amplitudes Am, An, Ac give the lowest energy single-triad
configuration. The following points in this consideration correspond in
numbering to the list of properties for τ .

0. The parameter � only affects the chosen triad through a scaling of the
angular wavenumbers.

1. As τ is proportional to C, for C = 0, ridges (Ac = σ(�kc)
3γ

, Am = 0 = An)
are the only solution to the amplitude equations. For larger |C| there
are special triads for which τ is large enough for there to be a “hexa-
gon” solution with all three amplitudes nonzero. For C <0 (the inverted
sphere), the amplitudes are all positive, whereas for C >0 (the sphere),
the amplitudes are all negative.

2. As τ is a symmetric function of the wavevectors, from the inequality
σ(�kc)>σ(�kn) for all wavevectors �kn in A follows the amplitude inequal-
ity |Ac| > |An|. We will, in fact, find |Ac| > |Am| � |An|, with the ratio
|An|
|Ac| increasing to 1 as |C| increases.

3. The linear growth rates σ(�km) and σ(�kn) are largest for m,n as close
as possible to � = 2N under the constraint m+n= 2N ; also, assuming
that τ =τ(�km, �kn, �kc = (0,2N)), τ is maximized for the choice m=n=N .
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Numerical experiments give m=n=N as the energy-minimizing choice
of angular wavenumbers.

4. As �kc = (lc =0,2N), we have that �km = (l,m=N), �kn = (−l, n=N). There
tension between σ and τ as to the best choice of l; σ is maximized for
l =0, whereas τ is maximized for l =∞. However, the critical wavenum-
ber choice lc =0, i.e., d = p+q

m+n
, is in the range of large τ even for small

choices of l. This allows for there to be a compromise choice, numer-
ically determined to be l � 1 for χ = 0; larger values of χ give larger
values of l, but l remains near 1 for reasonable values of χ .

Hence, for � = 2N and large enough |C|, the energy-minimizing
triad configuration is w = ∑

j=m,n,m+n Aj cos(�kj · �x) with �km = (l,N), �kn =
(−l,N), and �km+n = �kc = (0,2N) and with positive (respectively, negative)
real Aj for C <0 (respectively, C >0). For � =2N +1, it is no longer pos-
sible to choose m=n; in the energy-minimizing configuration, m=N,n=
N + 1. Examples for � = 12 and C < 0 are shown in Fig. 1(a) and, for
larger |C|, in Fig. 1(b). For C > 0, the centers of the hexagons would be
the minima instead of the maxima of the configuration.

We next address the question of transitions between these configura-
tions as the size of � increases. As � increases from 2N to 2N +1 and on
up, the energy-minimizing triad changes in the sequence

�kN = (l,N) �kN = (l,N) �kN+1 = (l,N +1)
�k′
N = (−l,N) → �kN+1 = (−l,N +1) → �kN+1 = (−l,N +1) →·· · .

�k2N = (0,2N) �k2N+1 = (0,2N +1) �k2N+1 = (0,2(N +1))

(14)

As � increases from 2N to 2N +1 and then from 2N +1 to 2N +2, there
is an abrupt change in the optimal triad, but the triad always has the
form �km = (l,m), �kn = (−l, n), �km+n = (0,m + n = �), where we find that l

does not depend on � (l is of order 1 and does depend on χ as discussed
above). Writing the wavevectors in the standard form �km = (lm = 2π

λ
(q −

md),m), �kn = (ln = 2π
λ

(p −nd), n), �km+n = ( 2π
λ

(p + q − (m+n)d),m+n), we
see that �km+n = (0,�) implies that d = p+q

m+n
= p+q

�
, and therefore l = lm =

−ln = ±2π
g
λ

1
�

. As l is constant with respect to �, the ratio g
λ

changes

like �. As a consequence, the area A = 2π λ
g
R� = 2π λ

g
��2 = (2π�)2

l
of a

primordium is constant with respect to �.
These are transitions of Type I. As noted in Section 2, these transi-

tions are observed in nature, particularly on plants (e.g., saguaro cacti) for
which the configuration is dominated by ridges (i.e., on plants for which
|A1|
|A3| is small), although they can also be observed on plants with hexago-
nal configurations, as in Fig. 6(a). Also note that one wavevector is pre-
served in each transition of the sequence (14). If one draws the curves
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Fig. 6. (a) On a plant that undergoes a Type I transition one observes two dislocations
(black and grey lines) and a family of spirals (white lines) that has no defect. (b) A Type
I transition from a (2,2,4) alternating 2-whorl phyllotaxis (large values of s) to (2,3,5)-spiral
phyllotaxis (small s) is drawn schematically. One spiral family (white lines) does not change
during the transition. A penta-hepta pair is formed where the two dislocations in the other
spiral families meet. The corresponding wavevectors are illustrated in (c) and (d) along with
the typical boundary of the set of active modes. Reprinted from Journal of Theoretical Biol-
ogy, P. D. Shipman and A. C. Newell, Polygonal Planforms and Phyllotaxis, accepted for
publication 2005, with permission from Elsevier.

joining the maxima of the surface deformation in adjoining regions with
different patterns, one sees dislocations in two families of spirals, corre-
sponding to the two wavevectors that changed, and a penta-hepta defect
at the point where the two dislocations meet. In Fig. 6, we illustrate this
in the (s, α)-plane, with the transition between the phyllotactic lattices of
the alternating 2-whorl (2,2,4) and (2,3,5)-spiral patterns.

4.2.3. Four-mode Configurations; Parallelogram Planforms

We have found that the most unstable triad is of the form �km =
(l,m), �kn = (−l, n), �km+n = (0,m + n), where m � n. The energy (7) allows
for the interaction of multiple triads, and particularly for larger values of
P there may be other triads in the active set that overlap with the optimal
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Fig. 7. For the choice of parameters P = 2.4, χ = 0,C = 3, the energy (7) restricted to the
sets of modes �k1 = ( 2π

λ
(0 − 1d),m = 1), �k2 = ( 2π

λ
(1 − 2d), n = 2), �km+n=3 = �k1 + �k2 and either

�k2m+n=4 (curve I) or �km+2n=5 (curve II) was numerically calculated as a function of d and λ,
and graphed is the lowest possible energy as a function of d.

triad. In particular, the wavevectors �k2m+n = �km + �km+n or �km+2n = �kn +
�km+n may come into play. For m = n, 2m + n = m + 2n, but if n = m + 1,
the wavevectors �k2m+n and �km+2n may not play symmetric roles; which
mode is more likely to have a nonzero amplitude in an energy-minimiz-
ing configuration? The simplest way to check is to minimize the energy (7)
restricted to the four modes with wavevectors �km = ( 2π

λ
, (q −md),m), �kn =

( 2π
λ

(p − nd), n), �km+n = �km + �kn and either �k2m+n = �km + �km+n or �km+2n =
�kn + �km+n. The energy thus becomes a function of d and λ and our task
is to find the energy-minimizing choices these parameters and the mode
amplitudes for each choice of a fourth wavevector. Using our experience
from the simple case of a single triad and the energy-minimizing choices
m�n� �

2 , consider the triads �km, �km+n, �k2m+n and �km, �kn, �km+2n. The ratios
m,n

m+2n
are closer to 1

2 than are the ratios m,n
2m+n

. For the choices m=1, n=2,
for example, the ratios 1

4 and 3
4 are farther from 1

2 than are the ratios
2
5 and 3

5 . Although we do not have an analytic proof that this leads to
a lower energy configuration with the wavevector choice �km+2n, it is con-
firmed by numerical experiments that this mode is energetically preferred.
Fig. 7 demonstrates the energy (7) restricted to the sets of four modes with
m=1, n=2 and either �k2m+n=4 (curve I) or �km+2n=5 (curve II) as a func-
tion of d; the lowest energy is achieved for the latter wavevector choice
at a value of d � 0.37. (To produce the graph, we compute numerically,
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for values of d and λ in a reasonable range, the energy-minimizing ampli-
tudes and the value of the energy (7); the graph shows, for each value of
d, the lowest energy as a function of λ.) Note that this value of d is not
exactly a value that makes any of the radial wavenumbers equal to 0; the
energy-minimizing choice of d is possibly irrational. Due to the indepen-
dence of the energies (5) and (7), after scaling, on �, similar results hold
for larger values of m,n. In this case, the energy-minimizing amplitudes
are such that am �am+2n <an �am+n; this produces parallelogram patterns
with parastichy pair m,n; see Section 4.2.4.

4.2.4. Five Modes and Bias

Rather than separately testing the sets of overlapping triads �km, �kn,�km+n, �k2m+n and �km, �kn, �km+2n, we may allow for all five modes to compete
together. That is, we restrict the energy (7) to the five modes �km = ( 2π

λ
, (q −

md),m), �kn = ( 2π
λ

(p − nd), n), �km+n = �km + �kn, �k2m+n = �km + �km+n, �km+2n =
�km + �km+n, and find the energy-minimizing choices of λ, d and mode
amplitudes. In Fig. 8(a) we show (curve I) the graph of the energy as a
function of d for the choice m = 2, n = 3,� = m + n = 5. In this case, the
energy reaches a local minimum at the choices d �0.388 (for which choice
the amplitude A7 is small and A2 �A8 <A3 �A8) and d �0.412 (for which
choice the amplitude A8 is small and A2 �A7 <A3 �A5). The latter choice
is slightly lower, so that a parastichy pair (5,7) minimizes the energy.

This calculation, however, disregards the effects of a previous
configuration that has formed for a smaller value of � and moved radially
outward from the generative region. The effect of having, as a boundary
condition, a previously produced configuration is to add constant terms cj

to the amplitude equations so that the evolution of the amplitudes is given
by ∂tAj =− δE′

δA∗
j
, where E′ =cjAj +complex conjugate+E. Redoing the cal-

culation of Fig. 8(a), curve I, but adding constant terms c2 = c3 = c5, c7 =
0=c8 to refect the chosen amplitudes for smaller �, the energy as a function
of d is as shown in Fig. 8(a), curve II. In this case, it is the amplitude con-
figuration A2 � A8 < A3 � A5,A7 � 0 and d � 0.378 that are favored. Now
increasing � in steps of 0.25 and using, as the constants cj , the energy-
minimizing choices of amplitudes from the previous value of �, the choice
d � 0.378 and the parastichy pair (5,8) remain preferred (Fig. 8(b)). Thus,
the bias of a previous configuration helps to give preference to a parallelo-
gram configuration with modes �km, �kn, �km+n, �km+2n.

In these five-mode experiments, one mode, either that with wavevector
�k2m+n or �km+2n had a very small amplitude so that the energy-minimiz-
ing configuration was close to the solution of a four-mode competition
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Fig. 8. For the choice of parameters P = 2.4, χ = 0,C = 3, the averaged energy E restricted
to the modes �k2 = ( 2π

λ
, (1 − 2d),2), �k3 = ( 2π

λ
(1 − 3d),3), �k5 = �k2 + �k3, �k7 = �k2 + �k5, �k8 = �k3 + �k5

becomes a function of d, λ and the amplitudes An of the modes for any given value of �.
(a) For � = 5 we calculated the energy-minimizing values of d, λ,An, and shown in curve I
is the energy as a function of d. Curve II is the energy as a function of d for constant terms
c2 =c3 =c5 =0.5, c7 =c8 =0 in the energy E′. (b) For increasing �, the energy E is graphed as
a function of d for increasing values of �. For each choice of �, the amplitudes of the pre-
vious choice of � were used as bias terms cj in the energy E′.
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with that mode absent. As a final example of a simplification of the energy
(7), we again study a competition of five modes, but this time the five
modes �km, �kn, �km+n, �km+2n, �k2m+3n. The energy-minimizing choice of d and
the amplitudes are shown as functions of � in Fig. 9(a,b) for the choices
m=3, n=5. No bias was added in this simple example. Notice that, as �

increases, the amplitudes of the modes with smaller (respectively, larger)
angular wavenumbers decrease (respectively, increase). For small �, the
amplitude of the fifth mode (21) is negligible, and a parallelogram config-
uration like that of Section 4.2.3 is produced; see Fig. 9(a). For � � 12,
all five modes have significant amplitudes (although the outermost modes
(3,21) are small). This produces a staircase parallelogram configuration;
see Fig. 9(b). As � further increases, the amplitude of the mode with

Fig. 9. For the parameters C = 3, χ = 0, P = 2.7 and modes with angular wavenumbers
3,5,8,13,21, we calculated (a) The energy-minimizing value of d as a function of � in the
range � = 5, . . . ,18. (b) The amplitudes of the 3,5,8,13,21 modes in the energy-minimizing
configuration as � increases. (c–e) Deformations w = a3 cos(�k3 · x) + a5 cos(�k5 · x) + a8 cos(�k8 ·
x) + a13 cos(�k13 · x) + a21 cos(�k21 · �x), where �x = (s = ln(r), α) and for values of d and the
amplitudes aj as determined by the experiment of (a,b), (c) at � = 8, so that d = 0.383, a3 =
0.3, a5 = 0.52, a8 = 0.58, a13 = 0.3, a5 = 0, (d) at � = 11, so that d = 0.3815, a3 = 0.15, a5 =
0.42, a8 = 0.53, a13 = 0.53, a21 = 0.15, and (e) at � = 14, so that d = 0.3815, a3 = 0.05, a +
5 = 0.32, a8 = 0.54, a13 = 0.55, a21 = 0.38. Reprinted from Journal of Theoretical Biology, P. D.
Shipman and A. C. Newell, Polygonal Planforms and Phyllotaxis, accepted for publication
2005, with permission from Elsevier.
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angular wavenumber 3 decreases to zero and the planform is again that
of parallelograms (Fig. 9(e)). Thus, a continuous transition from one par-
allelogram planform to another is achieved through a continuous change
in amplitudes and divergence angle.

4.2.5. Type I or II Transitions

We have, for simplicity, separately considered the cases of 3,4, or 5
modes. To unite these ideas and give reasons for the choice of Type I
or II transitions, we suggest the following picture: Imagine that, for the
choice � =m+n, a sum of modes with amplitudes . . . , am−n, am, an, am+n,

am+2n, . . . is the energy-minimizing configuration. The configuration may
consist of more modes, but the central modes are of largest amplitude
as the growth rate of a mode with radial wavenumber j decreases for
j further from m + n. The relative size of the amplitudes is determined
by the parameters P and C. For small P , the linear growth rates, and
therefore the amplitudes, of the outer modes, will be small (negligible), so
that the configuration will be essentially that of a hexagon configuration
(m,n,m + n). For large (but not too large) P , the outer amplitudes are
no longer negligible, and the configuration is that of parallelograms or
staircase parallelograms. Similarly, a larger |C| yields a larger interaction
between modes with angular wavenumbers (m−n,m,n) and thus increases
the amplitude of the outer mode m − n even if it is relatively strongly
linearly damped.

Now suppose that the configuration . . . , am−n, am, an, am+n, am+2n, . . . ,
formed for � � m + n, moves to the outer edge of the generative region
and acts as a bias on a newly forming configuration. If � does not change,
then the new configuration will be as the old one. However, if � increases,
say to m+n+1, then the linear growth rate of the m+2n-mode increases,
as does the linear growth rate of the mode m+n+1.

I. The true energy-minimizing configuration involves the optimal triad
with radial wavenumbers (m,n + 1,m + n + 1) and a Type I transition
from the (m,n,m+n) configuration.

II. However, if the amplitude am+2n is large in the bias configuration, it
can grow continuously with � and give preference to a Type II transi-
tion in which the amplitudes am+n and am+2n grow continuously as the
amplitudes am−n, an decay.

Thus, Type II transitions are more likely when the outer members of
a sequence of amplitudes are larger. As a consequence, the theory predicts
that ridge-dominated planforms are more likely to undergo Type I transi-
tions, whereas parallelogram planforms are more likely to undergo Type II
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transitions. In agreement with the results of DC, the pattern produced by
Type II transitions are not necessarily absolute energy minimizers, but rather
local minimizers that are easily accessed from the previous configuration. It
is important therefore to not only find energy-minimizing configurations,
but also to understand how they can be accessed from the previous state.

5. DISCUSSION

We now return to the question posed in the introduction, namely

(i) Can the same theory describe ridge-shaped and polygonal plan-
forms?

(ii) In the case of polygonal planforms, what determines the posi-
tions at which primordia (the polygons) form near the plant tip
and therefore the phyllotactic pattern that develops?

(iii) What determines the type of phyllo that a primordium will
develop into?

The first question is not addressed by DC, who assume that primor-
dia of a given size and circular shape form on a parabaloid. Thus, in the
DC model, the only difference in shape is the azimuthal elongation of pri-
mordia as determined by the conicity parameter N . Our model allows for
all the commonly seen simple planforms and also suggests that there is
a connection between ridge or hexagon patterns and Type I transitions
and parallelogram patterns and Type II transitions–Type II transitions are
more likely when there is more than one triad with significantly large
amplitudes. Furthermore, the DC experiments suggest that the decussate
(alternating 2-whorl) pattern can only be produced with azimuthally elon-
gated primordia or conical apices and short-range interaction. Our model
also produces ridge-dominated decussate patterns with radially elongated
primordia as seen in some cacti.

To address the second question, which was the focus of the DC
model, we first compare the parameters that were essential to both models.
The main geometric parameter in the DC model is the ratio �̃ = d0

R
of the

diameter of a newly formed primordium to the radius of the generative
circle. This parameter has almost an exact analog in our model, namely
the parameter � giving the ratio of the circumference of the central circle
of the annular generative region to the natural wavelength; � is analogous
to the inverse of �̃. Higher order phyllotactic patterns are produced as �

(respectively, �̃) is increased (respectively, decreased).
The second geometric parameter concerns the curvature of the apex;

DC define a conicity parameter N which determines the curvature of
the apex. Our curvature parameter C is different in that it is only
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relevant in the generative region. In order to produce hexagon patterns
in which the centers of the hexagons are the maxima (rather than the
minima) of the deformation, our model requires that the geometry of the
generative region be that of an inverted circle or hyperbolic, as depicted in
Fig. 4(b,c). Our parameter C is also analogous to the DC stiffness param-
eter α. While α measures the degree that old primordia influences new
ones (and thus a sort of interaction between primordia), in our model
C measures the degree of interaction between triads of modes in the
generative region. The essential difference between our two models is that
primordia interact in the DC paradigm, whereas the elementary compo-
nents that interact in our model are periodic modes.

DC propose, based on their paradigm, that the essential components
for a mechanical model are that it (i) defines a finite area for new pri-
mordia, and (ii) allows for “repulsion” of some sort. Our mechanism does
define a finite area A = 2π λ

g
R� which is essential for the results, but,

instead of a repulsion between primordia, the essential points are that (1)
the critical mode has wavevector (0,�), (2) the interaction coefficient τ is
sensitive to d and dependent on λ, (3) bias, which is relevant if there is
one than one triad present, is essential to producing Type II transitions
and the Fibonacci sequence. However, even if there is bias, if the defor-
mation is dominated by one mode, Type I transitions are preferred over
Type II transitions.

Regarding the difference between Type I and II transitions, DC pro-
pose that Type I transitions are preferred unless a quick change in �

allows a continuous Type II transition to take hold. In our model, the
Type I transition is also energetically preferred unless the deformation
consists of more than one overlapping triad and a bias allows a mode
of small amplitude to continuously grow in size with �. A consequence
of this is the prediction that ridge-dominated planforms are more likely
to undergo Type I transitions, whereas parallelogram planforms are more
likely to undergo Type II transitions. While this conclusion conforms with
our observations of cacti, there are no published data for a wide variety
of plants. Green et al.(11) proposed that the difference between the forma-
tion of whorls and spirals (and thus, presumably between Type I and II
transitions) is based on the width of the annular generative region. This
is not included in our model, as we have approximated the Laplacian by
the Euclidean Laplacian ∂2

r + 1
�2 ∂2

α; a further modification of our model
could test the idea of Green.

The DC model produces periodic (in d) transients during transi-
tions between a (1,2,3) spiral and a decussate (2,2,4) phyllotactic pattern.
Our model as presented here produces a sudden transition in which one
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Fig. 10. (a) The hexagons on this cactus give way to ridges as they move from the plant
tip, and (b) the parallelograms on this cactus give way to first hexagons and then rides as
they move away from the plant tip. The hexagonal region determines three families of spirals,
marked in white and corresponding to periodic deformations with wavevectors �k1, �k2, �k3 =
�k1 + �k2. The stickers, however, follow the spirals, marked in black, corresponding to the wave-
vector �k4 = �k2 + �k3.

wavevector is preserved. Both transition types are seen in nature; adding
spatial derivative terms to our model should be able to test if and under
what conditions periodic transients can occur.

We now turn to the third question. Our fifth hypothesis in Section
3.2 states that, outside of a region R, there is not further change in
the deformation w except that the amplitudes may grow uniformly. On
a typical plant, however, the primordium will eventually develop into a
mature phyllo–a leaf, a floret or any of many other intricate structures.
Fig. 10 shows simple cases of the change in deformations w as they move
away from the apex. In Fig. 10(a), one observes that a hexagon pattern
can change into a ridge pattern as the material matures; the purely cir-
cumferential mode grows in amplitude faster than the other two modes
in the triad. In Fig. 10(b), a parallelogram planform first changes into a
hexagonal planform and then a ridge-dominated planform as the material
matures. The phyllotactic pattern—the lattice of the deformation’s max-
ima—does not change, but the relative sizes of the amplitudes may change
as the material moves away from the apex. These simple examples of how
primordia may mature indicate that, at least in some cases, the different
modes of a plant’s configuration are amplified to different degrees. It may
be that a slight dominance of a purely radial deformation at the plant
tip may induce changes in cell division and cellulose orientation (micro-
scopic responses to macroscopic buckling, as proposed by Green et al.(11))
or a nonuniform hormone distribution in response to changes in stress.
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Furthermore, note in Fig. 10(b) that, even as one spiral mode (marked in
black) decays in amplitude, the stickers that form are aligned along the
direction of this decaying mode. Thus, although the processes that lead to
intricate phylla such as leaves or florets are much more involved than these
simple examples, the presence of elementary modes suggest simple ways in
which to study the feedback mechanisms between stresses, chemistry and
growth.

In contrast to the suggestion made above that mechanical buckling
initiates primordia and is followed by changes in plant hormone concen-
trations, a growing biological community believes that the initiation of pri-
mordia is also chemical. In particular, recent work has focused on the
growth hormone auxin and the role of the PIN1 protein in auxin trans-
port; see Reinhardt,(14) for a review. Models based on these ideas are able
to reproduce spiral or whorl patterns, but, like the DC model, do not
explain ridge patterns.

In,(16) we further discuss predictions of the mechanical model and
suggest experiments and observations to test the theory.
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